The distribution of extremal points of Gaussian scalar fields
نویسندگان
چکیده
منابع مشابه
The distribution of extremal points of Gaussian scalar fields
We consider the signed density of extremal point of (twodimensional) scalar fields with a Gaussian distribution. We assign a positive unit-charge to the maxima and minima of the function and a negative one to its saddles. At first, we compute the average density for a field in half-space with Dirichlet boundary conditions. Then we calculate the charge-charge correlation function (without bounda...
متن کاملcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولCritical Points of Gaussian-Distributed Scalar Fields on Simplicial Grids
Simulations and measurements often result in scalar fields with uncertainty due to errors or output sensitivity estimates. Methods for analyzing topological features of such fields usually are not capable of handling all aspects of the data. They either are not deterministic due to using Monte Carlo approaches, approximate the data with confidence intervals, or miss out on incorporating importa...
متن کاملPolarity of points for Gaussian random fields
We show that for a wide class of Gaussian random fields, points are polar in the critical dimension. Examples of such random fields include solutions of systems of linear stochastic partial differential equations with deterministic coefficients, such as the stochastic heat equation or wave equation with space-time white noise, or colored noise in spatial dimensions k ≥ 1. Our approach builds on...
متن کاملVisualizing the stability of critical points in uncertain scalar fields
In scalar fields, critical points (points with vanishing derivatives) are important indicators of the topology of iso-contours. When the data values are affected by uncertainty, the locations and types of critical points vary and can no longer be predicted accurately. In this paper, we derive, from a given uncertain scalar ensemble, measures for the likelihood of the occurrence of critical poin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 2003
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/36/16/307